

HEX & ROUNDED, MALE-FEMALE STANDOFFS

ITFIN	C D		В	A
Hex Standoffs Width Across JPPL the Flats COR (± 1/64)	Round Standoffs	Thread Size	Male Thread Length	Full Thread Depth Min
	Nominal Diameter (± 1/64)			
3/16	3/16	2-56	5/32	3/16
es\$/16 ₁₉₄₆	3/16	4-40	3/16	1/4
1/4	1/4	4-40	3/16	1/4
1/4	1/4	6-32	1/4	3/8
1/4	1/4	8-32	3/8	7/16
5/16	5/16	4-40	3/16	1/4
5/16	5/16	6-32	1/4	3/8
5/16	5/16	8-32	3/8	7/16
5/16	5/16	10-32	3/8	1/2
3/8	3/8	6-32	1/4	3/8
3/8	3/8	8-32	3/8	7/16
3/8	3/8	10-32	3/8	1/2
Tolerance on Le	ngth (up to 4 in.)	Nylon parts: ±.015		All other materials: ±.005

	Description	Male-female standoffs are used when one of the components is internally threaded. Aluminum is popular for its light weight/ strength compromise. It is non-magnetic, performs well in severe temperatures, and has insulating properties. Nylon is a good insulator and has a surface smoothness which will not fray the insulation of wires that rub against it. Its threads will withstand torque without stripping. Brass is used in making high-quality standoffs. It is conductive, resists corrosion, and is non-magnetic. It is costlier and heavier than aluminum and is usually plated zinc or nickel. Stainless has the advantages of brass but has superior resistance to corrosion and chemical fumes. Steel is used for its greater strength, but it is heavier than aluminum and does not resist corrosion like aluminum or brass. **Aluminum:* 2011 Aluminum (*Copper:* 5.0-6.0%; *Silicon:* 0.4% maximum; *Iron:* 0.7% maximum; *Zinc:* 0.3% maximum; *Bismuth:* 0.2-0.6%; *Lead:* 0.2-0.6%) **Nylon:* Nylon 6/6**	
	Applications/ Advantages		
S	Material		