TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>Kit Materials</td>
</tr>
<tr>
<td>05</td>
<td>Introduction</td>
</tr>
<tr>
<td>06</td>
<td>Facilitator Preparation</td>
</tr>
<tr>
<td></td>
<td>• Facilitator Checklist</td>
</tr>
<tr>
<td></td>
<td>• Why Computer Science?</td>
</tr>
<tr>
<td></td>
<td>• What is Computational Thinking?</td>
</tr>
<tr>
<td></td>
<td>• Planning Your Game Changers Event</td>
</tr>
<tr>
<td></td>
<td>• Activity Overviews</td>
</tr>
<tr>
<td>08</td>
<td>Activity Overviews</td>
</tr>
<tr>
<td></td>
<td>11 Pitch Your Passion</td>
</tr>
<tr>
<td></td>
<td>27 Hack Your Harvest</td>
</tr>
<tr>
<td></td>
<td>39Program Your Playground</td>
</tr>
<tr>
<td>46</td>
<td>Educational Standards</td>
</tr>
<tr>
<td>46</td>
<td>Teaching Computer Science Beyond NYSD</td>
</tr>
</tbody>
</table>
KIT MATERIALS

Below is a list of the materials included in this kit. If you want to create more, printable materials are also available on the included USB drive or online at 4-h.org/NYSD.

KIT INCLUDES:

- Facilitator Guide
- Youth Workbooks (x10)
- Scratch Coding Challenge Cards (x17)
- Game Board (x5)
- Dry Erase Markers with Eraser Caps (x5)
- Tractor Game Pieces (x5)
- Obstacle Stickers (bramble, boulder and lettuce x25 each)
- Beach Balls (x2, green and yellow)

USB DRIVE INCLUDES:

- Offline versions of Scratch Desktop (for Mac OS X & Windows)
- *Pitch Your Passion* Offline Instructions
- Printable Facilitator Guide
- Printable Scratch Coding Challenge Cards
- Printable Youth Workbook
- Printable Game Board
INTRODUCTION

Welcome to Game Changers, the 2019 4-H National Youth Science Day (NYSD) challenge!

If you’re unfamiliar with 4-H, we’re the largest youth development organization in the United States, serving more than 6 million kids each year. Our philosophy is to engage kids in hands-on learning that gives them a chance to make mistakes, learn from each other and develop important life skills like communication, resilience and leadership. 4-H takes place in classrooms, clubs, afterschools and camps across the country, and covers almost any topic you can think of, from computer science to music, animal husbandry, robotics, food security and much more. Kids, volunteers and 4-H leaders can decide to pursue the topics that interest them the most. In general, 4-H projects can be grouped into four main categories, or pillar areas, which include STEM (science, technology, engineering and math), civic engagement, healthy living and agriculture. National Youth Science Day is our signature annual initiative in STEM, and is designed to help make STEM fun and accessible to young people everywhere.

This year, we’ve partnered with Google and West Virginia University Extension Service to create activities that explore the topic of computer science, or CS, in a way that’s fun for kids and accessible for educators everywhere — regardless of your level of access to the internet or technology. Game Changers consists of three activities, each of which make connections between CS topics and a different 4-H pillar — agriculture, healthy living or civic engagement — to help make CS more approachable and to help kids understand the many ways it can be applied to the world around us.

In this guide, you’ll learn everything you need to know to facilitate the three Game Changers activities: Pitch Your Passion, Hack Your Harvest and Program Your Playground. You don’t need prior experience with computer science or coding to bring Game Changers to your students. Activities are designed to make it easy for everyone, including teen teachers, to facilitate activities. Each activity includes background and preparation details for the facilitator, discussion points, prompting questions and reflection questions. Game Changers is perfect for first-time and beginner coders ranging in age from 8 to 14.

ICON KEY
As you use this guide, take note of the icons. Each icon indicates the type of information that appears in a given section, including instructions you can read aloud like a script, helpful facilitator tips, tie-ins to 4-H pillar areas and important vocabulary words.
FACILITATOR PREPARATION

This section provides the background needed to comfortably teach the CS topics covered in this year’s NYSD challenge. Read through this section first to determine which activities you’d like to use, and brush up on CS concepts that will help make facilitating a breeze. Let’s get started!

Facilitator Checklist

- Review the basics of computer science and computational thinking in the section below.
- Familiarize yourself with three careers that use computer science skills.
- Select the activities that best fit your group and available time, space and tech.
- Review the vocab, materials and full instructions of the activities you choose.
- Print additional worksheets from the USB drive included in the kit (optional).
- Source any additional materials needed for the activities, including pens and pencils.

Why Computer Science (CS)?

Learning computer science is about much more than being able to write computer programs; it teaches kids an entirely new way of thinking and solving problems. In fact, recent research suggests that kids who learn CS from resourceful teachers tend to score significantly higher than their peers on standardized exams in reading, math, science and language arts. Not only that, but computer science skills, some of the most sought after in today’s job market, represent an opportunity for young people of all backgrounds to achieve upward economic mobility while fulfilling a critical workforce need. As of 2019, there are half a million open computing jobs and new ones are being created at nearly four times the rate of other jobs, while paying nearly twice as well. This represents a huge opportunity for today’s young people!

And computer science isn’t just about coding. The hands-on CS activities in Game Changers teach kids essential life skills like problem-solving, teamwork and resilience, which will help prepare them for college and career.

Career examples:

- **Health:** Biomedical engineers use CS to design life-saving medical devices like insulin pumps and wearable wellness devices like fitness and health trackers.
- **Agriculture:** Farmers use CS to make their farms more efficient, from setting up precision watering systems to programming autonomous tractors and machines.
- **Civic Engagement:** Government technologists use CS to develop tools that help register voters and set policies for national cybersecurity.
What is Computational Thinking?

The process of learning computer science teaches kids many important skills, including pattern recognition, logic, problem-solving, creativity and more. While the term “computer science” describes the entire discipline of creating computer programs and systems, computational thinking (CT) describes skills and approaches that allow people to solve complex problems systematically.

Besides being used to develop computer applications, CT supports problem-solving across all disciplines, including math, science and the humanities. For this reason, each of the NYSD activities in Game Changers emphasizes computational thinking whenever possible.

Core CT concepts include:

• **Decomposition**: Breaking big problems into smaller, more manageable problems.

• **Pattern recognition**: Observing patterns, trends and regularities in data.

• **Abstraction**: Identifying and extracting relevant information to define main ideas.

• **Algorithm design**: Creating an ordered series of instructions for solving similar problems or for doing a task.

Planning Your Game Changers Event

Game Changers is adaptable to a wide range of space, time and technology constraints. Two of the activities, marked as “unplugged,” teach computer science concepts without the need for technology or devices. The computer-based CS First activity, Pitch Your Passion, includes instructions and resources that allow it to be completed with or without internet access.

The three activities in Game Changers can be enjoyed individually or together in any order or combination, making it a perfect fit for classrooms or outside-school learning. Activities can also be completed from start to finish in one sitting or spread out over several days. We’ve provided examples of how you might structure your NYSD event, but please feel free to experiment and find a format that works for you.

<table>
<thead>
<tr>
<th>THE FULL CHALLENGE</th>
<th>Pitch Your Passion</th>
<th>Hack Your Harvest</th>
<th>Program Your Playground</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Minutes (Activities 1 & 2)</td>
<td>45 Minutes</td>
<td>60 Minutes</td>
<td></td>
</tr>
<tr>
<td>SHORT & SWEET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 - 60 Minutes (Activity 1)</td>
<td>45 Minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW-TECH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 Minutes</td>
<td>60 Minutes</td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY OVERVIEWS

This section introduces the three activities that make up the Game Changers challenge. It gives a brief overview of each, lists the CT concepts covered, and describes each activity’s tech requirements.

Pitch Your Passion

Activity URL: g.co/csfirst/NYSDpitch
Facilitator prep URL: g.co/csfirst/NYSDkit

This computer-based activity is an opportunity for kids to animate a passion, issue or cause they care about using code. By animating interactions between characters, changing their environment and adding sounds, supporters, dialogue and more, their project will help persuade others to care about their passion as well. This activity introduces kids to computer science through CS First and Scratch, a block-based coding language developed by MIT. Pitch Your Passion also has an optional follow-up activity that encourages kids to do research about a specific cause, and use that information to persuade their audience through the creation of a Public Service Announcement.

<table>
<thead>
<tr>
<th>CT CONCEPTS & PILLAR TIE-IN</th>
<th>TOTAL TIME REQUIRED</th>
<th>TECH NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Thinking:</td>
<td>Time required: 30-60 min</td>
<td>• Computer or tablet</td>
</tr>
<tr>
<td>• Decomposition</td>
<td>Optional follow-up activity: 60-75 min</td>
<td>• Headphones (optional)</td>
</tr>
<tr>
<td>• Algorithm design</td>
<td></td>
<td>• Internet connection (optional)</td>
</tr>
<tr>
<td>Pillar Alignment:</td>
<td></td>
<td>• Projector and screen (optional)</td>
</tr>
<tr>
<td>• Civic Engagement</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Hack Your Harvest

This activity introduces the concepts of automation and efficiency, and teaches the basic principles of writing instructions for computers to follow. Part 1 challenges kids to find efficient solutions to puzzles that simulate programming an automated tractor. In Part 2, kids are introduced to the traveling salesman problem, a popular computer science problem, through a similar puzzle format. In Part 3, kids design their own game boards and have classmates try to solve them.

<table>
<thead>
<tr>
<th>CT CONCEPTS & PILLAR TIE-IN</th>
<th>TOTAL TIME REQUIRED</th>
<th>TECH NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Thinking:</td>
<td>Time required: 45 min</td>
<td>None</td>
</tr>
<tr>
<td>• Pattern recognition</td>
<td>• Part 1: 15 min</td>
<td></td>
</tr>
<tr>
<td>• Algorithm design</td>
<td>• Part 2: 15 min</td>
<td></td>
</tr>
<tr>
<td>Pillar Alignment:</td>
<td>• Part 3: 15 min</td>
<td></td>
</tr>
<tr>
<td>• Agriculture</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>
Program Your Playground

This activity introduces the concepts of pattern recognition and abstraction. In Part 1, kids create their own modified version of tag as they learn the concept of conditionals. They then take turns playing their new games. In Part 2, kids use pattern recognition to find the similarities in various versions of tag and work in groups to create an entirely new kind of tag. Finally, in Part 3, kids abstract concepts from several examples, then use what they learned in the previous activities to create an entirely new playground game.

<table>
<thead>
<tr>
<th>CT CONCEPTS & PILLAR TIE-IN</th>
<th>TOTAL TIME REQUIRED</th>
<th>TECH NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Thinking:</td>
<td>Time required: 60 min</td>
<td>None</td>
</tr>
<tr>
<td>• Pattern recognition</td>
<td>• Part 1: 15 min</td>
<td></td>
</tr>
<tr>
<td>• Abstraction</td>
<td>• Part 2: 20 min</td>
<td></td>
</tr>
<tr>
<td>Pillar Alignment:</td>
<td>• Part 3: 25 min</td>
<td></td>
</tr>
<tr>
<td>• Healthy Living</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PITCH YOUR PASSION
PITCH YOUR PASSION

ACTIVITY INSTRUCTIONS

Introduction

Pitch Your Passion is an introductory coding activity that teaches kids how to use code to create an animated pitch about why people should care about one of their favorite topics. Giving young people a voice to express who they are is a founding value of 4-H. In Pitch Your Passion, kids will be empowered to make decisions and gain confidence in relaying their message to others. These critical civic engagement skills help young people learn to advocate for things they care about and grow into true leaders as they build a sense of compassion, confidence and pride.

For younger kids and teens with limited coding experience (or in scenarios where you have limited time to facilitate), the first activity encourages youth to pick any topic they care about — whether it's why they think dogs should be allowed to run for president, or why they think people should care about limiting trash in the ocean — and teaches them how to create an animated pitch using code.

An optional second activity allows teens and kids with more coding experience to conduct research on a topic of interest and use code to make a compelling case for why people should care through the creation of a Public Service Announcement (PSA). The activity is recommended for kids in 6th grade and older, or for kids with more coding experience, and can easily be integrated into classroom lessons and other existing curricula. Kids can complete the activity alone or in small groups. You can choose to do either activity or both, depending on your kids’ interest, age and time allotted.

These activities can be completed online or offline, but both options require access to a computer. Follow the steps in this Online Guide to complete the activity with an internet connection. The Offline Guide is located on the included USB drive.

Pitch Your Passion: At-A-Glance

In this activity, kids use code to animate a passion, issue or cause they care about. By animating interactions between characters, changing their environment and adding sounds, supporters, movement and more, their project will help persuade others to care about their passion as well.

This activity introduces kids to computer science and the programming language, Scratch. Kids will use different Scratch blocks to create their own unique programs.

Pitch Your Passion, Open Project Details: g.co/csfirst/NYSKit
Pitch Your Passion Example project: bit.ly/NYSDExample1
Pitch Your Passion Example project 2 (PSA): bit.ly/NYSDExamplePSA

Goals, Objectives and Outcomes

Pitch Your Passion will help kids get comfortable with coding. Scratch is an introductory coding language designed to get kids creating, having fun and feeling confident about coding skills quickly. With just a few blocks and clicks, they can make a “sprite” (character) dance, talk or come to life in endless ways. Additionally, the computer science concepts used in Scratch can be applied to other advanced programming languages, like Python or Java.
By the end of this activity, kids will:
- be familiar with the Scratch block-based programming language;
- have learned important computer science concepts, like events, sequencing, conditionals and loops; and
- have created an animation project in Scratch.

Full Activity Time
Pitch Your Passion Activity 1: 30-60 minutes
Pitch Your Passion Optional Activity 2: 60-75 minutes

Materials to get started
- Completion Certificates: 1 certificate per student (optional, found in the Youth Workbook and on the USB drive).
- Headphones (recommended but not required).
- Pitch Your Passion: Scratch Public Service Announcement worksheets (needed for the Optional Follow-Up Activity, found in the Youth Workbook and on the USB drive).

IMPORTANT VOCABULARY

Code: The instructions in a computer program that computer scientists use to tell a computer what to do.

Conditional: A type of statement that tells you what to do based on the answer to a question, usually shown in programming languages with words like “if,” “then” and “else.” For example, conditionals could be used to specify different actions within a game: If tagged, then you are “it.”

Event: Something that causes an action and can be triggered by key presses or messages sent from one part of a computer to another. For example, kids may change the color of a letter or change the size of a letter by using an event to initiate the action.

Sequencing: Putting things in order. When writing code, it’s important to carefully decide the order in which the code will run. For example, kids may create a conversation between two letters by specifying which letter speaks first and which letter responds.

Loops: A way to repeat an instruction or set of instructions. For example, kids may change how long a letter spins in a circle or jumps up and down by specifying the duration of the loop.

<table>
<thead>
<tr>
<th>ONLINE VERSION MATERIALS</th>
<th>OFFLINE VERSION MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Computer with internet access (recommend 1 per student or group of 2-3)</td>
<td>• Offline Activity Guide for Pitch Your Passion (located on USB drive)</td>
</tr>
<tr>
<td>• Online version of the facilitator guide (this document)</td>
<td>• Offline version of Scratch (located on USB drive)</td>
</tr>
<tr>
<td>• CS First website: g.co/csfirst/NYSPitch</td>
<td>• Computer(s) with Scratch desktop installed, 1 per student or group of 2-3</td>
</tr>
<tr>
<td></td>
<td>• Scratch Activity Cards</td>
</tr>
</tbody>
</table>
Setup Steps for Online

1. Decide if you will be using the online or offline version for this activity and follow the corresponding setup steps.
 - If you’re using the online version, proceed with the facilitator setup and instructions here.
 - If you’re using the offline version, download the Scratch offline editor from https://scratch.mit.edu/download (or your USB drive) and use the offline lesson plan (also on your USB drive). You can also download all the activity videos in bulk from g.co/csfirst/pitch-videos, and/or use the custom Scratch cards.

2. Decide whether you want to create a CS First class (recommended), or get started right away without creating a class. Instructions for both options can be found below.

3. Set up your computers and workspace.

4. Read the “Activity Introduction” and “Activity Instructions” aloud and present an Example Project (bit.ly/NYSDExample).

Facilitator Setup - Online Version

- **Go to:**
 - g.co/csfirst/nysdkit
 - Review the activity and familiarize yourself with the videos and lessons.

- **Setup**
 - Computers, an internet connection and optional headphones.

- **Students get started**
 - Provide students with the specific URL so they can get coding.

- **Create**
 - Students use logins to share and save their work.

Before the Activity:

Don’t have a computer or headphones for each student? Here are some ways you can still use CS First:

- Pair or group kids. Assign one student as the “driver” who controls the computer and one as the “instructor” who describes what to do. Switch roles every five minutes.
- Whole class. Project the activity and videos on a screen where all kids can see. After watching the Introduction video, have the class suggest how you might build the project in Scratch.
- Station rotation. If you have a computer station in your classroom or club space, allow kids to rotate to the computers to complete the activity. For the rest of the kids, consider using the unplugged activities in this guide. Other resources are available on https://www.csunplugged.org.
- Internet connectivity issues? If you experience issues with connectivity (either unexpected or regularly), use the offline version of the activity. You can also consider downloading the Scratch Offline Editor (https://scratch.mit.edu/download) on each computer or pre-downloading all of the videos (available at g.co/csfirst/pitch-videos) so you can project them at the front of the room.
Facilitators have two options for getting started with the online version. Decide which works best for you!

CREATE A CLASS

1. A CS First class allows you to see the students’ work, track their progress, generate Scratch usernames to save projects and more. Try to create your class before your event so you don’t lose time.

 Note: You need a Google account to create a class.

2. Create a class on the CS First website, g.co/csfirst/sign-in. A CS First ‘class’ is a club session that you’re running with a given activity and group of kids. You can create a new class for every unique group of students, or use the same class code for various clubs or groups of students.

3. Visit your CS First class at g.co/csfirst/my-clubs and locate your class code for this class.
 - a. This code is unique to your class. If you set up additional CS First classes, you will receive a new code for each.
 - b. Students (new and returning) will need to enter this code at the beginning of class.

4. Write the following on a board or piece of paper to share — somewhere the kids can see!
 - a. This URL: g.co/csfirst/go.
 - b. Your unique class code.

5. Direct kids to visit g.co/csfirst/go to sign in.

6. Students will click “enter class code” and type in the unique class code.

7. When asked if they need a username and password, click “Yes.” This will create one for them.
 - a. For privacy reasons, CS First does not store student names on the website. We recommend you write down usernames for each student so you can keep track.

8. Hand out the Youth Workbook and encourage students to write down their username and password on the first page. They will need these in sign in to CS First and Scratch.

Note: If you forget or lose your class code, you can access it by logging on to https://csfirst.withgoogle.com/dashboard/clubs.

GO DIRECTLY TO THE ACTIVITY

1. This bypasses creating a class and allows kids to immediately start watching videos and creating their projects.

2. Kids will not be able to share or save their work unless they have an existing Scratch account, or have a valid email address that will allow them to create a new Scratch account.

3. Direct participants to visit g.co/csfirst/NYSPitch.

4. Students will land on the activity page, watch the videos and start working on their projects.

Practice: Do an activity as a student so you have a better understanding of what your students will be creating.
Online Activity Scripts

Activity Introduction

In this activity, you will use code to create an animated story to convince people to care about a topic you’re passionate about. First, you’ll choose a topic. Think about something, some place or an action that you care a lot about and that you want other people to care about, too.

Here’s an example of a project you can make! Visit bit.ly/NYSDExample1.

Once you’ve picked your topic, you’ll need to decide how to tell your story in a way that will make other people want to support your cause. That’s called a pitch! Learning how to pitch is an important life skill. In business, people may pitch ideas to win new business or clients, start a new project or secure funding to pursue a new idea. Outside the office, people use pitching skills to inform and persuade others to take an interest in topics they care about. You can use your pitching skills to improve your community, engage in democracy, advocate for yourself and much more.

To build your pitch you will use the programming language Scratch. When you program, or code, you provide instructions for the computer to follow. Many programmers write code in text, meaning that they type it out on the keyboard. With the Scratch language, you code using blocks that snap together like puzzle pieces.

Activity Instructions (with a CS First class)

1. First, open an internet browser and go to g.co/csfirst/go to get started.
2. Click “Enter Class Code” and type in your unique class code. Click “Yes” when it asks you if you’re doing Pitch Your Passion for NYSD.
3. When asked if you need a username and password, click “Yes.” Then, write down the username and password the computer has generated for you, and click “Y” to confirm your CS First activity and location.
4. Now you’re logged in! You will see the “Pitch Your Passion” activity page. Plug in your headphones if you have them, and watch the introductory video at the top.
5. Open the starter project linked next to the video. This will open Scratch in a new tab.
6. Then, return to CS First to select an add-on video with a new coding challenge, and follow the instructions.
7. If you want to share and save your work, remember to click “Sign in” on the Scratch website. Sign in using the same username and password. Once you have signed in, you can remix, save and share your project.

Activity Instructions (without a CS First class)

1. Open an internet browser and go to g.co/csfirst/NYSDpitch to get started.
2. You’ll see the “Pitch Your Passion” activity page. Plug in your headphones if you have them, and watch the introductory video at the top.
3. Open the starter project linked next to the video. This will open Scratch in a new tab.
4. Then, return to CS First to select an add-on video with a new coding challenge, and follow the instructions.

- If I changed [choose a value or block] to [choose another value or block], what do you think would happen? Let’s test that hypothesis. What happened?

Wrap-up

- When there are five minutes left, remind students to click the green “next” button to complete a short survey. Give them 3-4 minutes to complete the survey.
- Have kids share their projects with a neighbor or do a whole gallery walk.
- If you created a class, instruct students to share their project in Scratch. This will allow you to view their projects from your Student Stats page. To do this, instruct the kids to go to the project in Scratch and click Share in the top right corner. If the Share button is not visible, the student should click Remix, then Save, then Share.

Discussion Questions

- Can you show me what you’ve created so far?
- What blocks are you using?
- What did you learn when you watched this video?
- How would you explain the code in your project to a younger student or sibling?

READ ALOUD

Reflection Questions:

Let’s discuss what you learned during this activity:

- What topic did you pitch in your program? What inspired you to make it?
- Have you done any research about this topic before?
- If you had more time, what would you add to your project? How would you do it?
- What was your favorite part of this activity?
- Why do you think others will be convinced to care about your project?
- What did you learn about coding?
- What was the most challenging part of this activity?
JOIN THE NYSD MOVEMENT!

Throughout the month of October, we estimate more than 200,000 kids will take part in NYSD at events across the country. Help us exceed our goal by joining the NYSD movement — together we can make hands-on STEM and CS education accessible to all!

- **PREP:** Get ready to facilitate *Game Changers* by reading through this guide. Focus on the Facilitator Preparation section for a concise overview of how to prepare.

- **PLAN:** Plan your NYSD event (or events) for any time during the month of October. An event can be as simple as taking over a class lesson or teaching a few kids at home, or as big as planning a community event for hundreds. Beyond October, re-use this kit anytime to bring CS to more kids!

- **CHECK IN:** Visit www.4-H.org/NYSD for the latest updates on NYSD. As October gets closer, we’ll add details and resources to help you make the most of NYSD, including promotional materials and printable resources.

- **SHARE:** Tell your friends and colleagues about NYSD, and don’t forget to share on social media using #4HNYSD.

Your feedback helps us improve NYSD each year! Once you’ve completed the *Game Changers* challenge, please take a few moments to fill out this survey about your NYSD experience: 4-H.org/NYSDsurvey.